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Preface

The purpose of 'his thesis was to study the effects of variable

inner wall temperature conditions in triggering or suppressing complex

multicellular flow fields within a narrow horizontal annulus. Such

research has practical applications In technological systers that employ

the annular geometry to cool or insulate critical components. Some

examples include nuclear reactor design, materials processing, aircraft

cabin insulation and pressuzized-gas underground electric transmission

cables.

In all, ten inner cylinder temperature distributions were examined,

offering insight into the nature of complex annular convective flow

patterns and the thermal conditions that cause them. Since this research

dealt only with low Prandtl-number fluids, follow-on studies of variable

Prandtl-number effects should be undertaken to further explore this

issue.

In preparing this thesis, I am deeply grateful for the assistance of

others who helped see me through this project. I wish to thank my

faculty advisor, Capt Daniel B. Fant, whose superb technical expertise in

this area filled many gaps and whose dedicated assistance made this

effort a valuable learning experience. I also wish to thank the computer

science technicians of Systems Research Laboratories for, answering all my

questions about the ISC computer system. Finally, I want to thank my

wlfeW M for her understanding and support during all those long days

and nights I had to spend on the computer.

David L. Bennett
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Abstract

The purpose of this study was to examine natural convection within a

m narrow horizontal annulus subject to variable inner cylinder temperature

distributions. Both numerical and analytical approaches were taken in

determining the effects of variable temperature conditions imDosed on the

inner cylinder in triggering or suppressing multicellular flow

instabilities.

The two-dimensional Navier-Stokes equations are simplified into

boundary-layer equations for the assumptions of large Rayleigh number,

small annular gap, and small Prandtl number. These 2-D unsteady

boundary-layer equations are discretized using finite-differencing

techniques. Numerical solutions to these governing equations are then

obtained by using a stable sccond-order, fully-implicit, time-accurate,

Gauss-Siedel iterative procedure.

*In addition, analytical steady-state solutions to these simplified

equations are obtained using perturbation methods. For most inner

cylinder temperature distributions considered in the steady flow regime,

these analytical results yield excellent agreement with numerical

results. Although both schemes predict the formation of thermal-like

instabilities induced by localized hot and cold spots in the horizontal

annular regions, the analytical model failed to predict the steady-state

multicellular hydrodynamic instabilities found numerically for the sin W

temperature distribution at C 4.95 in the vertical portions of the

xiii



annulus. The analytical model also fails to capture unsteady

3 multicellullar flow behavior found numerically for the sinusoidal

temperature distribution at G = 4.99. Limited unsteady numerical results

for this test case indicated oscillatory behavior in the strength of this

flow field.

xiv

xiv



L€

VARIABLE WALL TEMPERATURE EFFECTS ON MULTICELLULAR NATURAL

CONVECTION IN A HORIZONTAL ANNULUS

1. Introduction

The study of natural convection in concentric cylindrical annuli

receives considerable attention from researchers due to its practical

applications in the areas of nuclear reactor design, aircraft cabin

insulation, cooling of electronic equipment, thermal storage systems, and

material processing. The horizontal concentric cylinder geometry is used

in pressurized-gas underground electric transmission cables (Kuehn and

Goldstein, 1975).

The purpose of this study was to examine the effects of variable

wall temperature conditions on natural convective flows in a narrow

horizontal annulus. Of particular interest is the effects of variable

inner-cylinder wall temperature distributions in suppressing or

triggering hydrodynamic instabilities that give rise to the formation of

convective cell patterns within the annulus. Understanding the boundary

conditions that give rise to these multicellular flow fields is

important, since convective cells are the primary cooling mechanism for

the annular geometry. Such knowledge may aid in the design of efficient

concentric-cylinder cooling devices or related technological systems.

This thesis involves two approaches in accomplishing the stated

objective.

First, the 2-D Navier-Stokes equations are simplified into

1,



boundary-layer equations for the conditions of large Rayleigh number,

3 small annular gap, and small Prandtl number. These 2-D unsteady

boundary-layer equations are discretized using finite-differencing

techniques. The governing equations in discretized form are then solved

- using the AFIT VAX 8650 computer system to obtain the flow field.

The second approach involves determining analytical steady-state

solutions to these simplified equations using perturbation methods.

These solutions serve to support and compare related numerical results.

Before beginning a detailed discussion of these topics, a review of

the related literature is presented to examine recent work in this area

of study. Chapters II - IV discuss the background theory and analysis of

this problem, and Chapters V and VI present the key results and

conclusions.

~ Literature Review

The natural convection of flow between horizontal concentric

cylinders has been the subject of many investigations. In most of these,

m the focus has been on numerical studies of fluids with low Rayleigh

numbers or high Prandtl numbers of order I or larger that show close

agreement with experimental work. The convective behavior of low

Prandtl number fluids such as liquid metals has received little

attention. These fluids are often used as the working fluid in several

powergenerating cycles due to their excellent heat-transfer

characteristics.

This thesis considers natural convection of high Rayleigh number/low

Prandtl number fluids in a narrow horizontal annulus with variable

temperature distributions imposed on the inner cylinder wall. By

2



contrast, most recent work deals with isothermal boundary conditions,

with numerical work incorporating variable temperature effects nearly

nonexistent. Analytical approaches in modeling this flow regime are

equally rare.

This literature review covers three main topics; the analytical

approaches, the numerical studies, and the experimental analyses.

Analytical Studies. Only two analytical studies of natural

convection of low Prandtl-number fluids between concentric cylinders were

found. Both used perturbation methods to model high Rayleigh number flow

fields within the annulus.

t" Using the assumption of small annular gap width, Fant (1987),

derived a three-term perturbation expansion to obtain steady-state

solutions for the high Rayleigh number/low Prandtl number flow regime.

He obtained stream function and vorticity solutions that agreed well with

pretransitional numerical flow-field results. Since this thesis adopts

both his analytical and numerical methods, discussion is deferred to the

* next three chapters for a detailed treatment of this procedure.

Custer and Shaughnessy (1977) studied natural convection of low

Prandtl-number fluids within a horizontal annulus by solving the

dimensionless thermal energy and vorticity equations with a double

perturbation expansion in powers of Grashof and Prandtl numbers. The

temperature and stream function expansions were as follows:

T(r,e) = Pr Grr Tjk(r,e) (1.la)

J=Ok=O 

I
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W(r, e) ' Pr n Gri a m(r,e9)(.b

L. L. r 0 nu(lbn= 0 a = 0

The authors described the evolution of the flow for several radius

ratios, where in both cases the flow was composed of a single eddy in

each half-annulus for low Grashof number. As Grashof number was

increased, they observed that the eddy in high Prandtl-number fluids

fell, while the eddy in low Prandtl number fluids rose. Custer and

Shaughnessy indicated that only further experimental and numerical

studies of the unsteady flow regime could resolve multicellular flow

behavior.

Numerical Studies. As previously stated, the majority of the

numerical studies of natural convection in horizontal annuli have dealt

with low Rayleigh-number/high Prandl-number flows under isothermal

boundary conditions. Special emphasis shall be placed on the formation

and nature of multicellular flow fields and the numerical schemes which

were used to model them.
U

Charrier-NoJtabi IL al. (1978) studied natural convection flows

between two horizontal concentric annuli with constant surface

temperatures. They solved the problem using an implicit alternating

direction scheme with a vorticity and stream function formulation.

Rayleigh numbers varying between 102 and 5 x 10 4, radius ratios between

1.2 and 5 and Prandtl numbers of 0.7 and 0.02 were examined. For R = 1.2

and Rayleigh numbers of 6000 and 7000, no multicellular flow fields

resulted using air as the fluid (Pr a 0.7). However, for Pr - 0.02 and

R a 2, the flow regime became multicellular for large Rayleigh numbers

and began to oscillate, as the flow became unsteady.
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Rao et el. (1985) studied flow patterns of natural convection in

n horizontal cylindrical annuli. They used an unsteady formulation of the

2-D energy and vorticity-stream function equations which were solved by

using an ADI scheme with central-differencing. A radius ratio of 1.175

and a Rayleigh number of 4,000 resulted in the formation of two small

counter-rotating cells Just above the main kidney-shaped cells in the

upper annulus. Their results contrast with those obtained by

Charrier-HoJtabi et al. using the ADI method, who failed to achieve

multicellular flow patterns in their study of narrow-gap geometries.

Date (1985) studied natural convection in a horizontal annular gap

iU in which the isothermal inner cylinder was hotter than the cool outer

cylinder. His numerical prediction scheme involved solving the governing

equations for the primitive variables of pressure, velocities and

temperatures. This is in contrast to most other numerical schemes which

use the stream function-vorticity equations to generate solutions. His

numerical predictions for natural convection heat transfer for a gap

width/internal diameter (L/Di) ratio of 0.15 for air compare poorly with

computed heat transfer rates of Boyd (1981) and Crigull and Hauf (1966).

Farouk and Guceri (1981) examined both laminar and turbulent natural

convection between horizontal concentric cylinders held at constant

temperatures. Solutions for the laminar flow case were obtained up to a

5
Rayleigh number (based on gap width) of 10 . Turbulent flow results were

* obtained for Rayleigh numbers of 105 - 1OT. For the laminar case, the

2-D elliptic partial differential equations of vorticity, stream

function, and temperature with specified boundary conditions were solved.

An outside-to-inside diameter ratio of 2.6 was used with air in the



numerical formulation. For these conditions, the typical crescent-shaped

m cellular pattern emerged which has been found in previous studies.

Similar fluid circulation patterns were obtained in the turbulent

studies. However, the location of maximum stream function was found to

move upward.

Kumar (1988) investigated natural convection in horizontal annuli

for a wide range of Rayleigh numbers extending from conduction to the

convection-dominated steady flow regime for diameter ratios of 1.2 - 10.

Here, the inner cylinder is heated by a constant heat flux and the outer

cylinder is isothermally cooled. As found by other researchers, a

r" crescent-shaped eddy dominated for the small diameter ratioo, while a

kidney-shaped flow pattern emerged for a diameter ratio of 5. At high

Rayleigh numbers, as the diameter ratio is increased, more stagnant fluid

exists at the bottom of the annulus coincident with the prescence of the

kidney-shaped flow pattern.

Fusegi and Farouk (1986) conducted a three-dimensional analysis for

natural convective flows of air in an annulus having differentially

heated concentric isothermal horizontal cylinders using the

vorticity-velocity formulation. The Rayleigh numbers used were 103 and

410 . The ratio of the gap width to the inner cylinder radius studied was

1.6. The authors pointed out that 3-D numerical solutions were better

suited for modeling convective flow fields since 2-D numerical studies

could not capture all the important flow characteristics of a confined

fluid. Flow field results were graphically compared for both cases.

Radial velocity plots at 0 = 180" indicated that the 3-D flow motion is

much more vigorous than the 2-D case due to the formation of a

6



three-dimensional plume in this annular region. This was but one

phenomenon Fusegi and Farouk contended that the 2-D solutions overlooked.

Kumar and leyhani (1988) obtained detailed numerical results of

natural convection in a horizontal annulus with a constant heat flux

enforced on the inner cylinder and an isothermal outer wall. Prandtl

numbers studied were 0.7, 5.0 and 100 for radius ratios of 1,8 R :5 15.

The Navier-Stokes equations were recast as vorticity-stream function

equations. The vorticity transport equation and the energy equation were

solved using the false transient Alternating Direction Implicit (ADI)

method, and the stream function equation was solved by the successive

V over-relaxation (SOR) method. Prandtl number effects on flow field

characteristics in horizontal annuli were found to be insignificant for

Pr > 0.7 for the range of radius ratios studied. The results also

3 indicated that the important flow parameter for heat transfer due to

convection only is the conventional Rayleigh number.

Experimental Studies. Although many articles on experimental

B_ studies of natural convection within enclosures exist in the literature,

only those that deal with the concentric cylinder geometry are discussed

below. As with numerical studies of this problem, experimental work has

dealt mainly with the isothermal condition imposed on the annulus, while

variable inner cylinder wall temperature conditions are scarce or

nonexistent.

* •Kuehn and Goldstein (1976) performed an experimental and numerical

study of natural convection within horizontal concentric cylinders. The

experimental results were obtained using a Mach-Zehnder interferometer to

visualize the temperature field in the enclosure which can be analyzed to

7



determine the local heat flux. The flow field is assumed steady with no

axial variation in properties, except for end effects. The cylinders had

an annular gap width/inner cylinder diameter of 0.8. Two sets of

experimental runs were made; one with air, the other using water.

Quantities obtained experimentally included temperature

distributions and local and averaged heat-transfer coefficients. The

numerical solutions confirmed these experimental results, and provided

the related velocity distributions and extended the results to lower

Rayleigh numbers. The temperature distributions for both air and water

were nearly identical at similar Rayleigh numbers. The flow was steady

for all Rayleigh numbers investigated (Ra 5 105).

Kuehn and Goldstein (1978) later examined the effects of

eccentricity and Rayleigh number on natural convection heat transfer

through a horizontal cylindrical annulus. They found that eccentricity

of the inner cylinder caused large changes in the local heat transfer on

both cylinders, but the overall heat transfer coefficient for an

g eccentric geometry is within 10 percent of that for the concentric case

at the same Rayleigh number. At large Rayleigh numbers, the flow was

observed to become unsteady first In the plume above the inner cylinder.

This unsteadiness was seen to increase as the Rayleigh number was

increased. This turbulence rapidly decayed as the flow moved downward

along the outer cylinder such that the bottom half of the annulus

* "remained virtually steady. Hence, laminar and turbulent flows were seen

to exist in the annulus at the same time.

Sun and Zhang (1986) made an experimental study of natural

convection heat transfer in concentric and eccentric horizontal

8



cylindrical enclosures. They employed a Hach-Zehnder interferometer to

3gauge the temperature distribution within the annulus. The objective of

this study was to determine the effect of the diameter ratio K and the

eccentricity - on the heat transfer in the horizontal cylindrical

annulus. Experiments were performed using air at atmospheric pressure

with radius ratios K varying from 1.77 to 2.68 and eccentricities from

-0.50 to 0.35.

The local and overall heat transfer coefficients were obtained by

analyzing the interferograms over a range of Grashof numbers from
24

4.6 x 10 to 3.8 x 10 4. The shape of the interferometer fringes

indicated that the thermal boundary layer for air formed around the inner

cylinder and partly at the upper surface of the outer cylinders. For the

case of f = -0.5, temperature inversion and thermal boundary-layer

i separation effects were strongest in the upper portion of the annuli, and

to a lesser degree for .6 = 0 and Z" = 0.353. The stagnation zone at the

annulus bottom decreased when e increased from negative to positive

values. The thermal plume formed over the top of the inner cylinder

became more prominent with increasing eccentricity, since there was more

space and less flow resistance in the upper portion of the annulus.

Rao at al. (1985) experimentally obtained results for steady 3-D

natural convection in a horizontal cylindrical annulus. The objective

was to confirm the complex structure of the 3-D numerical results

obtained by the authors of this paper. Flow patterns were examined for

the large Rayleigh number/large Prandtl number regime. An increase in

the number of cells observed with increasing Ra confirmed numerical

studies of similar flows.

9



p DII. Mathematical Analysis

In this chapter, a vorticity-stream function formulation of the

Navier-Stokes equations is described in dimensionless form (based on

W Fant, 1987). By using this approach, the pressure terms are completely

eliminated while automatically satisfying the conservation of mass

principle. In addition, the resulting stream function and vorticity

contours are useful for visualizing and analyzing the flow field. The

dimensionless equations in final form are given in Eqs (2.26 to 2.28).

The Physical Model

a. The flow is unsteady and two-dimensional (see Figure 2.1).

b. The fluid is initially at rest.

m c. The cylinders are assumed horizontal with an isothermal outer

cylinder and a variable temperature distribution imposed on the

inner cylinder.

d. Laminar fluid motion is induced by buoyancy effects. The fluid

is Newtonian.

e. All material properties are assumed constant. Density

variations are allowed to occur via the Boussinesq

approximation.

The Dimensional Formulation

Governing Epuations Using the Stream Function-Vorticity Approach.

The vorticity-transport equation is derived by taking the curl of the

Navier-Stokes equations. This equation can be written as:

10
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+ ( ) (w v + VVW+ V X FB (2.1)

The bar over the variables signifies dimensional quantities. w and v

represent the vorticity and velocity vectors, respectively. The left

Pm side of this equation desribes the total rate change of particle

vorticity. The term (w • 6)v is identically zero for 2-D flows due to

the vorticity vector always being perpendicular to the plane of flow.

2-The term PV w represents the net rate of vorticity diffusion due to

viscous effects. The last term, V x PB' is the rate of internal

vorticity generation due to body forces, resulting from large density

r perturbations in natural convective flows. The fact that pressure does

not appear explicitly in Eq (2.1) enables the determination of the

vorticity and stream function (velocity) fields without prior knowledge

of the pressure distribution. Using the Boussinesq approximation for the

net body force:

-g(T - TO)i = -gt(T - T0)coS V er * gI?(T - T0 )sin ;P a (2.2)

where 13 is the coefficient of thermal expansion. The final form of the

vorticity-transport equation is:

&; iB(fw) T cospOT
- = gI [sin + ) V2 w (2.3)

r- O(r,w) 6 r &

and the thermal-energy and stream function equations are:

of i Odf,) 2-
- - = VOf (2.4)

and w = V2  . (2.5)

12



In the above equations, r and w represent the radial and angular

U coordinates. f is the temperature and t denotes time. v and a denote

the momentum and thermal diffusivities, respectively. The radial

velocity, u, and the angular velocity, v, have been written in terms of

-s the stream function, f, defined as:

-l of Of
u= and v= . (2.6)

Or

The number of dependent variables has now been reduced by one. The

convective terms are then given in terms of the Jacobian, O(P,Q)/O(x,y),

whereI
O(P,Q) OP O OP 9Q

= -- - -- (2.7)
&(x,y) t /y ey Ox

The three coupled governing equations (2.3, 2.4 and 2.5) describe

the vorticity, temperature and stream function for the horizontal

annulus.

Boundary Conditions. For temperature boundary conditions, the outer

i cylinder is assumed to be isothermal, while the inner cylinder has a

variable temperature distribution that is a function of the angular

position.

T = T IW at r a a

and T T O at r = b (2.8)

Both u and v are identically zero at both cylinder walls due to the

no-slip condition, yielding the boundary conditions:

13
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f=O, w at r= a and r = b. (2.9)

To ensure a computational continuous condition in the complete annulus

(0 - 2n) the following boundary conditions (in w) are enforced at zero

- and 2n radians:

and 10 = 0 1 for a : r 5 b, (2.10)

where 0 represents the dependent variable for temperature, vorticity, or

stream function.

Initial Conditions. Since there is no fluid motion initially,

f= = 0 and = T0  (2.11)

5 throughout the annulus, except at the walls where:

T T(W) and T = (2.12)

is enforced at r = a and b, respectively.

The Dimensionless Formulation

Casting equations in dimensionless form has several advantages.

First, it transforms the mathematical or numerical results into a simpler

form, allowing for better graphical interpretation. Secondly,

measurement scales are no longer an intrinsic part of the physical

quantities, therefore, any laws governing physical variables are valid

for all different measurement systems (Fant, 1987). Finally, when a

problem is nondimensionalized, fewer variables are used and the proper

dimensionless groups characterizing a particular flow model are usually

14



brought forth.

3 Coordinate.Transformation. The radial coordinate is

nondiaensionalized so that the outer boundary at j:=b is transformed

Into the unit circle, r = 1. The inner boundary, r =a, is transformed

into the pole, r = 0. The following coordinate transformation results:

ra
r =- , a - ,. (2.13)

The other independent variable, time, scales as

t = -2(2.14)

Coverninit Eauations. The remaining dependent variables can now be

scaled to produce the following:

T = (temperature) (2.15)

wa2
w W (vorticity) (2.16)

f =-(stream function) (2.17)

Eqs (2.13 to 2.17) are now substituted into Eqs (2.3 to 2.5) resulting In

the following nondimensional governing equations.

r 2 Ow 1 (r 1 0(f'w) 1 r V2w
a. t G O(r,w) 2

OT 1 --OT
+C-Ra {sin - + coeny (r + )J (2.18)

15



20T 1 -I1 (f,T) I T,G (r+ ...... -TJ (2.19)
at G O(r,w) Pr

V G 2w (2.20)
2

- where

V2 02 a 1  -2 .2

2 2 + tr j j +~ + 2Or G O G aw

Also,

Pr = - (Prandtl number) (2.21)

Ra = (Rayleigh number (2.22)
pe based on the inner

radius, a)

b - a

and C = (gap number) . (2.23)
a

The three dimensionless parameters that arise from this analysis are G,
U

Pr and Ra. These key variables are used to simulate various flow

conditions and geometries. The magnitude of the Rayleigh number reflects

the ratio of destabilizing buoyant forces to the more stabilizing viscous

forces. It also predicts the onset of thermal and/or hydrodynamic

instability. The Prandtl number characterizes the fluid and the gap

number defines the annular geometry.

In deriving Eqs (2.18 to 2.20), the variables W, f and t are

non-dimensionalized with v instead of a. This was done in order to

reflect a thermal-diffusion dominated energy equation for small Prandtl

16



* numbers, which was the focus of this study. For further details on this

* procedure see Fant (1987).

In Rqs (2.18 to 2.20) the Jacobian terms can be expressed in terms

of the velocity variables, u and v, where

U +)- (radial velocity) (2.24)

* and

V=- = (tangential velocity) (2.25)
G r

With these substitutions, the dimensionless governing equations become:

iT Energy:

21 1T OTOTC - +UG -- +vG r +- -

at Or G a

1 02T 1.-I Or1 2

2( r + + r + - 2} (2.26)

* Vorticity:

2 O OW O
Pr { C2  + uG - + vC

a w Ow 1 -l1
=Pr ;- + uG Or + vG (r +G) -

(Ra) I sinw' + cost' rr +- - (2.27)
Or G- OwJ

17



Stream Function:

U2 02fa2f 1 -1 Of 1 )-2 2

W2 ( + - ) - + 1r.J - =G w .(2.28)

The form of Eqs (2.26 - 2.28) facilitates the asymptotic analysis that

follows in Chapter III, where the limits of Ra -* a, G -* 0 and Pr - 0 are

separately examined.

-, Boundary Conditions. The nondimensional boundary conditions for

this problem are obtained by substituting Eqs (2.13 - 2.17) into Eqs

(2.8 - 2.10). They are at r = 0 (inner cylinder):

T = i(W)

2q
1 02f

w G2  r2

f 1 0 (2.29)

and at r = 1 (outer cylinder):

T= 0

w c2 &r2

f =0 . (2.30)

The computational continuous condition at zero and 21r radians still

applies, except that dimensional quantities are now nondimensionalized.

Initial Conditions. The dimensionless initial conditions are

virtually identical to Eqs (2.11 and 2.12) for the entire annulus:

T - f - w - 0, (2.31)

except at the inner and outer cylinder walls, where:

18



T a TI () at r = 0

It and

T a 0 at r = 1 . (2.32)

These initial conditions assume a motionless fluid (Ra = 0), where the

m problem becomes the steady-state conduction case for a cylindrical

annulus. However, when numerically searching for transitional or

unsteady flow behavior, initial conditions other than zero are used.

These procedures are discussed in Chapter IV.

1

I
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* III. Analytical Analysis

In this section, simplified boundary-layer equations are derived

from the 2-D Navier-Stokes equations for certain limiting conditions (see

- Fant, 1987). Analytical steady-state solutions to these equations are

then determined.

fl~j Boundary Layer Eguat ions

Using the governing Navier-Stokes equations as shown in Chapter II

(Eqs 2.26 to 2.28), Fant (1987) obtained the following expansions of the

dependent variables for the conditions Of infinite Rayleigh number

(Ra . D) and small annular gap width (G -* 0):

1-//-

v = Ra v2  + 0(1)

3/4- 1/4
w =Ra w +0(Ra

f =Ra 1/4j + 0(Ra"'14)

T =T + 0(Ra1 ) . (3.1)

Using these expansions, the Wavier-Stokes equations reduce to the

following Cartesian-like, boundary-layer equations:

Energy:

Z2 OT fOT Of OT I aD
C ~i - --+ i (3.2)
at OW r OrOW J Prr2

20



* Vorticity:

rw af~ w aG2 Pr -- +G Pr &f &w + Of - 5 Pr W2+ G sinW - (3.3)
at O~WOr or aw JO r

Stream Function:

;;2.f (3.4)

with related boundary conditions,

VT(0,W) = T (w), TOMw T T0 (W) (3.5)

f(OW) = f(1,W) =0 (3.6)

;(O,) w~,W) C D r 2ir = 0,1(37

Note that the annular curvature effects appear through sinW in the

*buoyancy term of the vorticity equation above. Variable wall temperature

influence comes In through T I and T~ 0In Eq (3.5). These governing

equations are valid for finite Prandtl number. Importantly, the Rayleigh

number and gap number dependency has vanished and is replaced by a single

scaled gap parameter

C R a11  C .(3.8)

To maintain the unsteady term, tine was scaled as

-1/2t t Ra .(3.9)

The scaling of these equations is based on the scaling typical of laminar
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natural convective boundary-layer flows, which come forth under the

conditions of high Rayleigh number and small-gap width, namely,

-Ra 1/4  • (3.10)

In this study, the finite Prandtl number boundary-layer equations

are simplified for the limiting condition of Pr ' 0, characteristic of

liquid-metal fluids. As discussed in the literature review, other

studies of natural convection in narrow annuli have mostly concentrated

on air as the working fluid. The study of small Prandtl number effects

on flow instability for this particular geometry are rare, especially

with regard to the variable wall temperature influence. The derivation

that follows addresses this issue.

First, let vorticity and stream function scale as:

w x IW + (3.11)

f = X2F + (3.12)

* The stream function equation (3.4) requires

21x"2 " x1 (3.13)

With Eqs (3.11) and (3.12), the vorticity equation (3.3) becomes

Z2 OW - r OF OW OFOW)
GPrx, .- +PrZx 2 1  - -+ - -

at Lev r ory Jw

a 2W 47

= Pr X, w + G sinw - (3.14)
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* or,

C PrX1
- -- Pr GX 2xI Pr X I-G (3.15)

In order to retain the physics of the problem. Balancing the viscous

term with the buoyancy term gives

G

Pr

then Eq (3.13) yields,

-3

x G (3.17)

Pr

Eqs (3.16) and (3.17) are then substituted into Eq (3.15) to get

Z2 - O(Pr'1 4) (3.18a)

and t which yields from Eq (3.18a)

-- 1/2
*t -O(Pr ) .(3.18b)

With these relations, new scaled variables can be defined:

- 1/4C Z Pr' (3.19a)

and

t =t Pr11  (3.19b)

Therefore,xI 
PC 3 4( 

. 0
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x X2  Pr-1 / 4  (3.21)

which yield the following expansions:

-3/ 1/4

w -Pr~" W + O(Pr )(3.22)

- PC 1/4F O(Pr 3/4 ) (3.23)

TT + O(Pr) .(3.24)

Scaled gap number and time can now be expressed in terms of the key

dimensionless variables:

C PrC 4 ~ R / (3.25)

11 Ra 1/2
t PCr- ,/2 ) t .(3.26)

These new scaled variables show a unique dependency on Ra, Pr, G and t.

Substitution of Eqs (3.22 - 3.26) into Eqs (3.2 - 3.4) yields the

following simplified set of governing equations:

m Energy:

W V, 0(3.27)

Vorticity:

C -. + + -- -- =-W + Csinv - (3.28)

Stream Function:

C W (3.29)
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The energy equation is completely uncoupled from the vorticity equation.

The boundary conditions'for the energy equation are as follows,

T(0,W) = T 1(W) (3.30)

T(l,V) = T o(v) (3.31)

where Ti(w#) and T 0(wJ) denote inner and outer wall temperatures,

respectively. The isothermal outer wall temperature for this model is

taken to be zero, while the inner wall remains variable, or

T(0,w) = TIM~ (3.32)

* !(l,W) = 0 .(3.33)

Integrating equation (3.27) twice yields,

T =C 1r +C 2  (3.34)

and applying the boundary conditions of Eqs (3.32) and (3.33) results in

the following expansion for temperature across the annulus:

*T(r,W) =(To T I) r + T 1  (3.35)

and

-(T 0 -T 1) .(3.36)

or

Using Eq (3.36), the governing equations reduce to their final form:

Vorticity;

OW F OF O W ew 2
G-. +a - - - + - - W2- + G sin w (T 0- ) (.7

Stream Function:

25



L

*2F

- G W (3.38)

with boundary conditions

- F(O,W) = F(1,W) = 0 (3.39)

OF OF
-(,W) =- (1,W) = 0 • (3.40)
Or Or

These equations will be solved numerically in Chapter 5 using various

inner wall temperature profiles in order to study flow behavior and the

multicellular instabilities that may arise.

The Steady-State Perturbation Solution

Rearranging Eq (3.38) results in the following expression for

vorticity:

W z.2 (3.41)
Or2

- Assuming steady-state conditions and substituting Eq (3.41) in Eq (3.37)

yields:

Ar OF 03F OF O 3F a4F A3

3 r + 2  +' C (T - T) sin w (3.42)

Taking the limit of C -* 0, one can derive a perturbative solution to the

governing equations. By examining Eq (3.42) one can deduce the expansion

for stream function to be

F = C3 F + 7 F ( (3.43)

26



and from Eq (3.41), vorticity can be expressed as

The first effects of the convective terms come in through F 2 and W~ 2'OG (.4

- Substituting expansion (3.43) into Eq (3.42), and matching terms of like

coefficients yields the following steady-state result:

G (T 0 - T I) sin W (3.45)

a 04F 2 OF 10 3 F 9F O 3FI

&V - 3 +2 (3.46)
F r ~ r Or Or &V

Integrating Eq (3.45) yields,

4 3 r2

FI - (TI -T) sin W 4C 1 -+ C 2 - +C 3 r + C 4  . (3.47)
1 41 31 2

The constants of integration are obtained from the boundary conditions of

Eqs (3.39) and (3.40) and result in:

2U i

F, = r2 (r - 1)2 (T I - T 0) -(3.48)
24

Differentiating Eq (3.47) twice with respect to r yields

= { = r (r - 1) + } (TI - TO) snW(3.49)

Substituting Eq (3.48) into Eq (3.46) yields
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415r 4 + 14r3 6r2 r T1  To)2 2 sin 2w
242 (3.50)

Integrating Eq (3.50) four times and applying boundary conditions

(Eqs 3.39 and 3.40) yields

F2 (I T) sn 9 r8 r r6

2 rsr r2 r 6
F 2 (T I T 0)

96 1512 336 180 180

r5  -
3  2  (.1

+ -+ (3.51
360 1512 5040

and W2 becomes

r i r r 1 12 II o2 sin 2W rI r 6  7r5  r 4  r3 r

2= T) - + - + + 3.52)
96 21 6 30 6 18 252 2520

The expressions for F2 and W2 contain the term sin 2w, which may

contribute to the multicellular behavior of the flow field at some

critical value of G. The one-term expansions, found to be

* 1 sin W -F = Z3 r 2 (r -112 (T I T 0o) -(3.53)/

24

W= C r r - 1) + - (TI - TO ) 2 , '3.54)

provide good approximations in modeling pretransitional flow behavior for

Pr -* 0. Since many terms in the perturbation expansion may be required

to capture complex flow behavior, one expects the two-term equations to

be valid for only weakly-nonlinear flow instability. In this study, the

full effects of the nonlinear convective terms were handled by solving
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the partial diferential equations numerically (see Chapter 4).

Eqs (3.53) and (3.54) represent analytical solutions for the

steady-state pretransitional stream function and vorticity, applicable

throughout the annulus (0 - 2n). In this form, a variety of variable

wall temperature conditions can be considered. These temperature

profiles, which can vary with the angular coordinate w, may be used to

model various hot and cold spots on the cylinder walls. Several

interesting variations of the inner cylinder wall temperature are

described in detail in Chapter 5. Numerical and analytical solutions

relating to each inner wall temperature variation are also presented and

I: compared in this chapter.
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! IV. Numerical Analysis

There are two topics of discussion in this chapter. The first

describes the finite-differencing method used in solving the coupled set

of governing partial differential equations. These equations are the 2-D

unsteady boundary-layer equations developed in Chapter 3. The second

topic deals with the computational procedure employed to solve the

resulting finite-difference equations. Here, the iteration sequence,

convergence criterion, and relaxation parameters for the numerical

procedure are described.

The basic numerical approach, relating to the zero-Prandtl number

flow regime, was adopted from Fant (1987). In this study, however, the

buoyancy term in the vorticity equation was modified to account for

nonisothermal effects.

In handling the streamwise nonlinear convective terms, a corrected

second-order upwind scheme was used for the boundary-layer equations.

mm For the radial convective terms, a corrected second-order central

difference expression was employed. This approach ensured numerical

stability when solving highly convective flow problems. The unsteady

form of the equations provided the opportunity to capture both steady and

unsteady behavior when solved in a time-accurate fashion.

The Numerical Method

The 2-D unsteady boundary-layer equations presented in Eqs (3.37)

and (3.38) are discretized using finite-differencing techniques. The

governing equations in discretized form are well-suited for solving on a
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high-speed computer system. The computational domain consists of a

cellular mesh formed by the intersection of variably spaced radial lines

with circular arcs concentric with r - 1. The grid nodes are the points

where these radial lines and concentric arcs intersect. The cellular

mesh generalized for variable increments is shown in Figure 4.1. Since

the angular distance between the nodes was kept constant in this model,

the variables (Kb, Kf, ...) in Figure 4.1 were simply replaced by the

constant K. In general, the use of variable increments in the

computational domain permits the concentration of nodes in areas of large

gradients, such as the boundary-layer regions near the inner and outer

L cylinder walls.

For all temperature distributions imposed on the inner cylinder, the

complete annular flow field (0 - 2n) was numerically resolved. Vertical

symmetry was not assumed.

Variable Increment Finite-difference Formulas. The derivatives in

the governing equations are transformed into variable increment

* finite-difference expressions using Taylor series expansions.

Standard expressions for forward, backward and central differences,

taking into account formal truncation errors for variable increments, are

given in Fant (1987).

For the unsteady term in the equations, a stable forward-difference

molecule is used:

n+ n

+ 0(At) (4.1)
a t 0 At

where n is the time level at which the dependent variable * is evaluated.
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Finite-Difference Sguations for the Dependent Variables. All

n spatial derivatives in the governing equations are second-order centrally

(or upwind) differenced. This includes the convective terms in the

vorticity equation (3.37) which are represented by a first-order upwind

- expression together with a correction term for second-order accuracy.

The convective terms are split in this manner in order to enhance

numerical stability when resolving secondary flow behavior. This

procedure is explained in greater detail in Fant (1987). For the

zero-Prandtl boundary-layer equations, only the vorticity and stream

function equations (Eqs 3.37 and 3.38) had to be solved numerically in a

coupled manner. The following one-equation format is used to represent

these two coupled equations:

- rG 2 + 2X-+ 2M-+ S = 0 (4.2)

with the nonlinear convective terms expressed as:

U 2 - 1 - 3 Ho 3 - (1 + H) 0 1m2X-- (X- I×1) +

Or hb  hb + h

+ (X + IX) (4.3)
hf hb + hf

and
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*~0 q'4.~ =(s0i *4 + q 0 i

- i~~2 (p - IPI) * (4)

I K 2KJ

where 0' represents the dependent variables T or W4, and

H h f

Also,

OF
2X Al - (4-5a)

OW

and

OF
2P - Al -(4-5b)

or

where

Al G A2
0. , =F ii, *=F

with

10, ~=F
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For the radial convective terms (Eq 4.3), the first terms within the

U brackets are the first-order upwind-difference components and the second

terms are the added corrections which bring the differencing up to

second-order accuracy. The X terms within the parenthesis ensure that

stable differencing 'Into-the-wind' is enforced. since the

boundary-layer equations are only first order in ;, a corrected

second-order upwind-differenced expression was used to represent the

streamwise convective terms (Eq 4.4). Here, the second term within the

brackets represents the added correction to achieve second-order

accuracy.

Using the above results, the boundary-layer equations are written in

the following finite-difference form:

S0 0 n1 = (A2) T A G 0n + C10 n+l + C242
n +l + C3 n+1

+ C404 n+l n+l + n+l  (4.6a)

where

(A) A 2(A2) 1 1 1 1
CO  + - + rx [-- )+ rXI -+ -J

T hbhf hf hb hb hf

2(A2) x + IXI
C + r ) (4.6c)

Shf (hf + hb) hf
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* c 2 =r (4.6d)

2( A2) (X-:)
(h 3 = (4. 6e)

hf+hb hb hb

C 4 =(4. 6f)

with

ri (4.6g)

The correction term En1is defined as follows:

E r 3 ~+ 1 I+ (H -1) 0 O' H - H J
U - ~' (h~ hb ) 1' (+)+ n+1 (1'H n+1(2 H*-

10r{2  2j I+

- 12 ()1 (4.6h)
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In addition,

3~ G sin ?p04 T OUTER(WO) T INNER (Wo 0 W (.1

1 - 2 WOn~

- where the buoyancy term (Eq 4.61) permits variations in temperature with

W' on the inner and outer cylinders.

Boundary Conditions. Considering the complete annulus, the

finite-difference form of the boundary conditions are:

Energy:

FTJ = T (W) (4. 7a)

T n =0
NR,j 04.b

Vort icity:

ln+1 2 (4.7c)
- 14 (Gh 1)2

=p~ NR-1,j 4.d14R,J 2 (.d(Gh NR-1)

Stream Function:

F 1 = 0 (4.7e)

M,j

To satisfy continuity at zero and 2nr radians, a computational continuous

condition must be defined such that:

37



n+1 n+l (4.7g)
m *1,2 1 i,N+l

where 0 represents the temperature, vorticity, or stream function.

Again, for further discussion of this differencing procedure, see Fant

, (1987).

The Computational Procedure

The system of coupled finite-difference equations (as described in

the preceding section) are solved implicitly in time using a point

Iterative Gauss-Siedel method with underrelaxation. At a given time

level, the dependent variables are found by repeated iterations of the

governing equations.

With the inner and outer wall temperature distributions preset, the

dependent variables were initialized by setting them to zero. Previously

converged results at a particular time level were used as initial

conditions to start the next time level calculations. This procedure was

repeated until steady-state was achieved or unsteady behavior developed.
U

Iteration Sequence and Convergence Criterion. The boundary-layer

governing equations in finite-difference form were numerically iterated

in the following order:

I. vorticity equation

ii. stream function equation.

For the small-Prandtl number limiting condition, the energy equation was

integrated analytically.

The above sequence was repeated until successive iterations were

within a prescribed tolerance. The maximum modulus of the difference
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between vorticity and stream function for two successive iteration values

HU defined the relative convergence constraint, or

3m+1 ,n+t _-m~~

max I < 1 x 10- 6  (4.8)n max

where 0 again represents vorticity or stream function. When Eq (4.8) was

satisfied, the numerical solution was considered converged. Here, m

refers to the iteration level and n denotes the time level.

Relaxation Parameters. Two independent relaxation parameters, 01

and 02 were incorporated into the finite-difference equations to control

the rate of convergence of the iterations. The relaxation parameter, 01,

was used in conjunction with the vorticity boundary conditions. For

example, on the inner cylinder:

W .+l n+l = 01 I 2F an+1/(ChI)
2 ) + (1 -0 )Wm 1  (4.9)Ili 1, 1~l )2 Imnl(.9

along r = 0, where hI denotes the radial spacing between the first

* adjacent node and the wall. Typically, .1 5 01 5 .5 was the range used

1\

to help stabilize the numerical computations. The second relaxation

parameter, 021 was used with the second-order upwind differenced

correction terms which were based on the new time level (En+ l). The

interior point equations for the vorticity were computed according to:

W'm+4,n+l = (A2)& G n + .m,n+l + nm C +I + l,n+l + C.+l,n+l
0 0 1 1 2W2 3W3 4W4

sm+'n1,n / CO + ) 2 2E+ + (1 - C2) )mn+/ C0 (4.10)

For C2 < 1, the differencing of the correction term became a weighted
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average of Gauss-Siedel (current level) and Jacobi (previous level)

iterations. Generally, .1 :5 D2 :5 .5 was used in the numerical

computations. For further details on the computational procedure, see

Fant (1987).

Computational Details and Discussion. All computational runs were

made using 31 radial nodes and 241 angular nodes for the entire annulus

(0 - 2n). The mesh spacing was slightly compressed by a factor of 1.5

near the inner and outer walls.

For all calcualtions, a scaled time step (At) of 0.5 was chosen.

This size time step translates to small actual time increments since

A 1/2
t = (Ra/Pr) t. For each test case (inner cylinder temperature

distribution), G values of increasing magnitude were considered until

unsteady behavior resulted. All test cases were started by obtaining the

= 1.0 flow field. Then for each slightly higher value of Z, the flow

conditions from the previous G value served as reference data for the new

set of results. When flow instability developed at some value of G, the

number of iterations for convergence and the computer CPU-time increased

significantly. Only one test case, T( ) = sin V, was used to gain

unsteady flow results (see Chapter 5). All other test cases were studied

within the steady-state regime.

Generally, steady-state solutions were achieved within 40 time

steps, although solutions were taken to 500 time steps to ensure

convergence. The amount of CPU-time required to achieve the steady-state

condition was approximately 38.4 seconds, or an average of 0.96 seconds

per time step on the AFIT VAX 8650 computer system. Conversely, about 4

hours CPU-time was required to run 200 time steps when dealing with the
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unsteady multicellular flow regime. Such time-consuming operations

U restricted the amount of unsteady flow studies that could be conducted

for this thesis.

I
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V. Results and Discussion

In this chapter, the flow fields resulting from various temperature

distributions imposed on the inner cylinder wall are examined. For each

variable inner wall temperature distribution, TI(w), a set of isotherm

and streamline contour plots are presented for flow visualization. In

the streamline contour plots, the numbers embedded in the streamlines

denote stream function strength, where negative values denote

counter-clockwise fluid rotation and positive values denote clockwise

rotation. Positive and negative isotherm lines represent hot and cold

regions, respectively, on the inner cylinder. Steady-state analytical

results are directly compared using plots of vorticity and stream

function data in areas of interest within the annular flow field. In

addition, the unsteady flow regime shall be examined for one of the test

cases described below.

Inner Cylinder Temperature Distributions

Figure 5.1 displays the ten inner cylinder temperature distributions

considered in this study. Test cases (a - f) were chosen to impose

regions of gradual temperature variation around the annulus, as modeled

by simple trignometric functions. More localized hot and cold spots were

modeled in cases (g - ). The presence of localized heating on the inner

cylinder wall reflects a more realistic condition than the isothermal

boundary condition that dominates similar studies in this area. Note

that the circles in Figure 5.1 represent the inner cylinder with the

important features of the temperature distribution drawn in for clarity.
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Figure 5.1. Inner cylinder temperature distributions
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The functional form of the annular temperature variation is presented to

m the left of sketch. More detailed isotherm representations of these test

cases are given in the next section and in Appendix A.

Numerical Results

- In this section, several test cases which illustrate the variety of

flow characteristics encountered in this study are discussed. Results of

other temperature distributions are mentioned only briefly, with their

stream function and vorticity plots included in Appendix A for

completeness. In all but a few cases, numerical results were obtained

for (scaled) gap numbers of 3.0 and 4.40 to examine low and moderate

buoyancy effects on the flow circulation within the annulus. Three inner

wall temperature distributions were examined up to the unsteady flow

transition point, with one case ran at a gap number high enough to induce

unsteady effects.

Steady-State Results. Case a, TI = sin p, was found to yield

steady-state results for gap numbers up to 4.95. The isotherms for this

temperature distribution are shown in Figure 5.2a. For gap numbers up to

4.93, the flow field exhibited the familiar kidney-shaped cell pattern,

shown in Figure 5.2b, associated with an isothermal inner cylinder

(TI = 1). As Figure 5.2c illustrates, a steady multicellular flow

develops in the vertical portions of the annulus when gap number is

increased to 4.95. This type of flow instability appears to be
L

hydrodynamic in origin, induced by fluid buoyancy shear effects. The

instability occurs near the hottest/coldest parts of the inner cylinder

(; = 90° , 270). This makes sense physically since this is where the

largest temperature difference between the inner and outer cylinders
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occurs for this case (see Figure 5.2a), thus providing the maximum

U buoyancy force for flow convection in the annulus. Note that both cells

are rotating in the same manner, clockwise. Unsteady results for this

case using G = 4.99 are discussed in section 5.2.3.

|- Kidney-shaped cellular patterns were also prevalent in cases

c and d, where the upper half of the inner cylinder was cooled or heated

while maintaining isothermal conditions (T1  1) on the lower half.

Here,the cosine function was employed to produce the greatest

nondimensional temperature diference between the inner and outer

cylinders at V = 180, where TI(n) = 0 for the cooled case (case d) and

TI(n) = 2 for the heated case (case c). As shown in Figures (Al a - c)

the effect of cooling on the upper half-cylinder was to shift the

convective circulation toward the bottom of the annulus. The opposite

effect occurs when the upper half-cylinder is heated (Figures A2 a - c).

Increasing C from 3.0, increased the stream function strength but did not

change the basic cell structure. Another type of flow field encountered

* was the formation of discrete counter-rotating cells induced by

alternating hot and cold regions distributed evenly around the inner

annulus wall. The temperature distribution of TI = - cos(2v) shown in

Figure 5.3a, produced the most complex of these multicellular flow

patterns. Figures 5.3 b and c show the six-cell streamline contours for

gap numbers of 3.0 and 4.40, respectively. Although the temperature

peaks, which occur every 90 degrees, produce identical nondimensional

inner and outer wall temperature differences of 1, the convective cells

at p = 90 and 270 are much larger than the other four. This phenomenon

is due to the influence of buoyancy effects being strongest at these
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annular locations, as explicitly shown by the analytical result:

F 1 osin P (TI W)

Also, vertical symmetry of the cell formation is recognized.

Other test cases exhibiting this flow behavior were the inner wall

temperature distributions T - cos W and TI = cos ?p, which produced

four counter-rotating cells of equal size and strength. No cells were

predominantly larger due to the equal buoyancy influence at each cellular

location in the annulus. Unlike sin w, the cos W temperature

distribution did not induce a more complex multicellular flow field when

the unsteady flow transition point was reached at C = 5.75. The isotherm

and streamline contour plots for T = cos W and T = - cos W are found in

Appendix A (Figures A3 a - c and A4 a - c).

The test cases involving more localized temperature changes on an

otherwise isothermal inner cylinder (cases g - J), model hot and cold

spots near the top of the annulus. Case i models a triple hot spot

distribution symmetric about W = 1800, where a temperature peak of 2.5 is
U

reached. Two secondary peaks of 1.8 are located ± 220 from the vertical

symmetry line (see Figure 5.4 a). As shown in Figures 5.4 b and c, these

hot spots induce the beginnings of a secondary cell formation near the

top of the annulus. This flow field is similar to the isothermal case,

except for this localized increased convective activity.

The cold spot of case J (Figure 5.5 a) gives rise to a thermal

instability of two discrete counter-rotating cells near the top of the

annulus. As gap number is increased from 3.0 to 4.40, these small cells

become stronger as does the larger kidney-shaped cells which dominate the
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flow field (see Figures 5.5 b and c). Note that this convective behavior

*t resembles the thermal instability of air (Pr = .7) in an isothermally

heated narrow annulus.

Cases g and h, presented in Figures A5 a - c and A6 a - c in

== Appendix A, model single and dual hot spots, respectively. These

temperature distributions produce simply an elongation of the upper

portion of the kidney-shaped counter-rotating cells. Strong secondary

cell formation does not occur as in case i, where the sharp central peak

contributes to this condition. As with cases i and j, increasing gap

number to 4.40 only increases the stream function strength without

altering the basic cell pattern.

Analytical Comparison. The analytical perturbation expressions

derived in Chapter III, from the zero-Prandtl number boundary-layer

Uequations were used as checks to the steady-state numerical results.

These comparisons support both the flow fields found by the numerical

procedure and the analytical analysis itself.

W The two-term perturbation expressions for stream function and

vorticity were used to generate comparative data for the pretransitional

numerical results. Stream function and vorticity were compared at the

angular coordinate where maximum stream function occurred for 0 : r 5 1.

Comparison of stream function data was also made at the annulus

centerline (r = .5) for 1800 5 W 5 360 . For each test case, the

comparative data was generated for the largest gap number used In the

numerical analysis of section 5.2.1.

The temperature distribution, TI(W) = sin w, demonstrates the limits

of the analytical formulation in describing pretransitional flows.
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Figure 5.2 d shows how the analytically generated streamlines for

= 4.95 resemble the numerical result of C = 4.93 (Figure 5.2 b), while

failing to capture the numerically-generated multicellular flow structure

of Figure 5.2 c (for G = 4.95). Figures 5.2 e - g explicitly show the

analytical agreement with C = 4.93 numerical data, while Figures 5.2 h -j

highlight the descrepancies in the C = 4.95 results. analytical vs.

numerical comparison plots for stream function and vorticity (Figures h

and i) indicate significant differences in the solution where stream

function strength is maximum. This difference is also seen along the

centerline (Figure 5.2 j) where descrepancies exist for 2250 :5 W 3000.

This is the multicellular region which could not be resolved by the

two-term perturbation result.

All other cases exhibited very close agreement when comparing

analytical and numerical solutions, except for case c; the cooled upper

half-cylinder. As Figures Al d - g show, the descrepancies were not as

dramatic as the sin w case, particularly for the centerline comparison.

n These descrepancies were due to the use of the transitional gap number

for this case (C = 4.71) to generate comparison data. Although the cos W

test case was evaluated at its transitional gap number (as sin W was for

C= 4.95), no discernable differences in the data was noted. From this,

one might conclude that discrete, counter-rotating cells tend to

stabilize the flow field compared to the kidney-shaped cell pattern.

since the comparison data for the other seven cases were within the

steady-state or pretransitional zone, no descrepancies were found (as

expected). The comparison plots are included with each test case

following the flow field contour plots.
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Unsteady Results. Only the sin W inner cylinder temperature

distribution was numerically studied in the unsteady flow regime. As

mentioned in section 5.2.1, a gap number of 4.99 induced unsteady flow

behavior in the annulus. The solution was carried out to t = 1000 to

further study this unsteady development. Flow field plots, corresponding
A

to t = 200, 400, 600 and 800 are presented in Figures 5.6 a - d. As time

progressed, the weaker cells diminished and softened in structure. Then,

as seen in Figure 5.6d, some re-strengthening of the cell pattern

occurred near t = 800. Due to time considerations (on the average, 200

time steps required 4 hours of CPU time), the solution was not carried

I out further to determine if this cyclic-like flow behavior persisted.

Although, it appears that some type of cellular structure interaction is

occurring in the vertical portion of the annulus.
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VI. Conclusions and Recommendations

The influence of variable inner wall temperature distributions have

direct effects on the formation of multicellular convection flows in

U' narrow horizontal concentric annuli for both steady-state and unsteady

flow regimes. For most test cases examined in this study, the two-term

analytical perturbation expressions of Chapter III provided excellent

agreement with pretransitional numerical results for steady-state flows.

These solutions begin to diverge, however, when the point of transition

to the unsteady flow regime is reached, as shown explicitly by the sin W

.'test case of chapter V. This is to be expected, since the analytical

formulation is derived on the assumption of steady-state conditions and

cannot capture any time-dependent multicellular flow field behavior.

These solutions are therefore best suited for quick flow field

visualization of steady-state convection in the annulus subject to

variable inner wall temperature conditions.

Abrupt temperature changes on the upper cylinder surface (hot or

cold spots) give rise to small, discrete convective cells, especially in

the horizontal section of the annulus, which resemble thermal

instabilities characteristic of air in a narrow horizontal enclosure.

This is in contrast to the instability formed in the vertical portions of

the annulus by isothermal or gradually-varying inner wall temperature

conditions. This instability is hydrodynamic in origin, induced by

buoyancy forces.

In the context of a simplified set of governing equations, one can

obtain a multitude of cellular structures in the annular flow field.
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Such complex convective flow behavior may enhance heat transfer of

systems employing the concentric cylinder geometry for cooling or

insulation purposes. Understanding the inner wall conditions that cause

such phenomenon is central to this analysis.

In order to gain further insight into the formation of discrete

multicellular steady-state flow fields, more studies are recommended in

the pretransitional regime using a variety of hot and cold spots on the

lower and side portions of the inner cylinder. In addition, more

numerical work should be performed in the unsteady and transitional flow

regimes for a variety of inner cylinder temperature distributions to

* .study the nature of unsteady multicellular instabilities. Experimental

studies of low Prandtl-number fluid convection are strongly recommended

for the narrow-gap concentric cylinder geometry with variable inner wall

temperature conditions to verify the limited numerical work performed in

this area.

Additional numerical and analytical work is also recommended to

study how finite Prandtl-number fluids effect the solutions obtained for

the test cases examined in this thesis. Such research would offer

insight into the behavior of viscous fluids under variable inner wall

temperature boundary conditions within a narrow annular enclosure.

Finally, a parametric study of the numerical grid could be performed

to see how grid density affects the flow field solutions, perhaps

indicating an optimal configuration for resolving multicellular flow

behavior.
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Abstract

The purpose of this study was to examine natural convection within a

narrow horizontal annulus subject to variable inner cylinder temperature

distributions. Both numerical and analytical approaches were taken in

determining the effects of variable temperature conditions imposed on the

inner cylinder in triggering or suppressing multicellular flow

instabilities.

The two-dimensional Navier-Stokes equations are simplified into

boundary-layer equations for the assumptions of large Rayleigh number,

small annular gap, and small Prandtl number. These 2-D unsteady

boundary-layer equations are discretized using finite-differencing

techniques. Numerical solutions to these governing equations are then

obtained by using a stable second-order, fully-implicit, time-accurate,

Gauss-Siedel iterative procedure. In addition, analytical steady-state

solutions to these simplified equations are obtained using perturbation

methods. 7~~e.~ fp) t )~ 7
For most inner cylinder temperature distributions considered in the

steady flow regime, these analytical results yield excellent agreement

with numerical results. Although both schemes predict the formation of

thermal-like instabilities induced by localized hot and cold spots in the

horizontal annular regions, the analytical model failed to predict the

steady-state multicellular hydrodynamic instabilities found numerically

for the sin ? temperature distribution at C = 4.95 in the vertical

portions of the annulus. The analytical model also fails to capture

unsteady multicellullar flow behavior found numerically for the

sinusoidal temperature distribution at C 4.99.


